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Name: _________________ 
 
 
 
 
 
Instructions: 
 
• CAS calculators are NOT allowed 
• External notes are not allowed 
• Duration of test:  45  minutes 
• Show your working clearly 
• Use the method specified (if any) in the question to show your working 

(Otherwise, no marks awarded) 
• This test contributes to 7% of the year (school) mark 
 
 
 
 
 
 
 
 
 
 
 
 
 

All arguments must be given using principal values. 
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Question 1 (4 marks: 1, 1, 2) 
 
The following diagram shows a complex number  z  on the complex plane.  
 
It is known that  
 
Locate the following complex numbers. Label your answers clearly. 
 
(a)  (1 mark)   
 
 
(b)   (1 mark) 
 
 
(c)   (2 marks)     
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Question 2 (6 marks: 2, 4) 
 
Simplify the following expressions, leaving your answers in rectangular form; 
 

(a)  
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Question 3  (5 marks) 
 
Solve the equation          
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Question 4  (4 marks: 2, 2) 
 
On the Argand plane below, sketch the locus of points given by 
 

(a) 2 2z z i− = +  (b) 2 2 2 2z z i− = + −  
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Question 5  (7 marks: 1, 1, 2 and 3) 
 
 
Consider the polynomial  5 3 2( ) 8 8f z z z iz i= + − − . 
 

(a) Show that ( )z i+  is a factor of ( )f z  (1 mark) 
 

 
 
 
 

(b) Find another factor of ( )f z  (1 marks) 
 
  
 
 
 
 
 

(c) Factorise ( )f z  (2 marks) 
 
 
 
 
 

(d) Solve the equation ( ) 0f z = , giving answers in polar form. (3 marks) 
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Question 6  (7 marks) 
 
Use De Moivre’s Theorem     
 
To prove the trigonometric identity     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

( )cos sin cos( ) sin( )ni n i nθ θ θ θ+ = +

5 3sin(3 )cos(2 ) 8sin 10sin 3sinθ θ θ θ θ= − +
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Question 7  (5 marks) 
 
It is known that                        is a factor of                                                      . 
Use this information to find all the roots of the equation                .  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

( 2 3 )z i− + 4 3 2( ) 4 9 16 52f z z z z z= − + + −
( ) 0f z =
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Question 8  (7 marks: 4, 3) 
 
(a) On the axes below sketch the region of the Argand diagram for which (4 marks) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) For the region defined in part (a) above, find the minimum and maximum values for 
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